Math 8 Homework 4

1 Orderings and Other Relations

(a) An irreflexive relation R is one for which $x R x$ is never true. Give an example of such a relation.
(b) An antisymmetric relation R is one for which $x R y$ and $y R x$ implies $x=y$. Describe all equivalence relations which are also antisymmetric.
(c) A partial ordering is a relation which is reflexive, antisymmetric, and transitive. Given a partial ordering \leq, we can define \geq via the (obvious) rule $x \leq y$ if and only if $y \geq x$. Prove that \geq is also a partial ordering.
(d) A total ordering is a relation which is partial ordering with the additional assumption that given any two x, y in the underlying set, $x \leq y$ or $y \leq x$. Give an example of a partial ordering which is not a total ordering.
(e) Given a partial ordering \leq on a set S and an object $z \notin S$, we can extend \leq to $S \cup\{z\}$ with the rule $x \leq z$ for all $x \in S$. Prove that this extension is still a partial ordering.
(f) Let L be the set of all lines in the plane and \perp be defined by $\ell_{1} \perp \ell_{2}$ if and only if ℓ_{1} is perpendicular to ℓ_{2}. Is \perp transitive? Symmetric? Antisymmetric? Reflexive?

2 Equivalence Relations

(a) Prove the following are equivalence relations (these are all important examples)
(i) On \mathbb{Z} define $x \equiv y$ if and only if there is some $k \in \mathbb{Z}$ so that $x-y=7 k$.
(ii) On \mathbb{R} define $x \simeq y$ if and only if $x-y \in \mathbb{Z}$.
(iii) On $[0,1] \times[0,1]$ define $(x, y) \sim(w, z)$ if and only if either $(x, y)=(w, z)$ or both $x=w$ and $y+z=1$.
(iv) On the square $S=[0,1] \times[0,1]$ define its boundary $\partial S=(\{0,1\} \times[0,1]) \cup([0,1] \times\{0,1\})$. Define $(x, y) \approx(w, z)$ if and only if $(x, y)=(w, z)$ or both $(x, y),(w, z) \in \partial S$.
(b) For each of the above equivalence relations, describe the collection of equivalence classes. Most of them have a geometric meaning; try to include this 'pictorial' interpretation in your description.
(c) The following is a false proof that transitivity and symmetry implies reflexivity. Find the flaw.

Proof. From $x \sim y$, symmetry implies $y \sim x$. Transitivity lets us combine these into $x \sim x$.
(d) Let S be a nonempty set. Find all equivalence relations $R \subseteq S \times S$ which are also functions (using the formal definition of a function as a set of ordered pairs).
(e) Let $C^{1}(\mathbb{R})$ be the set of functions $\mathbb{R} \rightarrow \mathbb{R}$ with continuous derivatives. Define $f \sim g$ to mean that $f^{\prime}=g^{\prime}$ everywhere. Prove there exists a bijection $C^{1}(\mathbb{R}) / \sim \rightarrow \mathbb{R}$.

3 Constructing the Rational Numbers

You need not take new mathematical objects on blind faith. For example, why can we just declare -1 has a square root? Let's take a look at fractions and how they're rigorously defined. If we didn't "believe in" \mathbb{Q} before, the steps below show how to build something that works just like rationals should. Furthermore, this construction can be used on more general algebraic objects; in abstract lingo, we've localized the ring \mathbb{Z}.
(a) Define \simeq on $\mathbb{Z} \times(\mathbb{Z}-\{0\})$ as $(a, b) \simeq(x, y)$ if and only if $a y=b x$. Prove that \simeq is an equivalence relation.
(b) Consider the set of equivalence classes $(\mathbb{Z} \times(\mathbb{Z}-\{0\})) / \simeq$, which we will rename Q for brevity. We'll also abbrieviate the equivalence classes; $[a, b]$ represents the equivalence class of (a, b). We can define addition in Q by the rule $[a, b]+[x, y]=[a y+b x, b y]$. Prove this is "well-defined" in the following sense: if $(a, b) \simeq(c, d)$ and $(x, y) \simeq(z, w)$, then $(a y+b x, b y) \simeq(c w+d z, d w)$.
(c) Prove the map $f: Q \rightarrow \mathbb{Q}$ given by $f([a, b])=a / b$ is a well-defined bijection and that $f([a, b]+[x, y])=$ $f([a, b])+f([x, y])$. Such an f is called an isomorphism, meaning that Q and \mathbb{Q} look the same, as far as additive structure goes. The set Q is our construction of the rationals.

