
Math 8 Homework 4

1 Orderings and Other Relations

(a) An irreflexive relation R is one for which xRx is never true. Give an example of such a relation.

(b) An antisymmetric relation R is one for which xRy and yRx implies x = y. Describe all equivalence relations
which are also antisymmetric.

(c) A partial ordering is a relation which is reflexive, antisymmetric, and transitive. Given a partial ordering ≤,
we can define ≥ via the (obvious) rule x ≤ y if and only if y ≥ x. Prove that ≥ is also a partial ordering.

(d) A total ordering is a relation which is partial ordering with the additional assumption that given any two x, y
in the underlying set, x ≤ y or y ≤ x. Give an example of a partial ordering which is not a total ordering.

(e) Given a partial ordering ≤ on a set S and an object z 6∈ S, we can extend ≤ to S ∪ {z} with the rule x ≤ z
for all x ∈ S. Prove that this extension is still a partial ordering.

(f) Let L be the set of all lines in the plane and ⊥ be defined by `1 ⊥ `2 if and only if `1 is perpendicular to `2.
Is ⊥ transitive? Symmetric? Antisymmetric? Reflexive?

2 Equivalence Relations

(a) Prove the following are equivalence relations (these are all important examples)

(i) On Z define x ≡ y if and only if there is some k ∈ Z so that x− y = 7k.

(ii) On R define x ' y if and only if x− y ∈ Z.

(iii) On [0, 1]× [0, 1] define (x, y) ∼ (w, z) if and only if either (x, y) = (w, z) or both x = w and y + z = 1.

(iv) On the square S = [0, 1] × [0, 1] define its boundary ∂S = ({0, 1} × [0, 1]) ∪ ([0, 1] × {0, 1}). Define
(x, y) ≈ (w, z) if and only if (x, y) = (w, z) or both (x, y), (w, z) ∈ ∂S.

(b) For each of the above equivalence relations, describe the collection of equivalence classes. Most of them have
a geometric meaning; try to include this ‘pictorial’ interpretation in your description.

(c) The following is a false proof that transitivity and symmetry implies reflexivity. Find the flaw.

Proof. From x ∼ y, symmetry implies y ∼ x. Transitivity lets us combine these into x ∼ x.

(d) Let S be a nonempty set. Find all equivalence relations R ⊆ S×S which are also functions (using the formal
definition of a function as a set of ordered pairs).

(e) Let C1(R) be the set of functions R → R with continuous derivatives. Define f ∼ g to mean that f ′ = g′

everywhere. Prove there exists a bijection C1(R)/∼ → R.

3 Constructing the Rational Numbers

You need not take new mathematical objects on blind faith. For example, why can we just declare −1 has a
square root? Let’s take a look at fractions and how they’re rigorously defined. If we didn’t “believe in” Q before,
the steps below show how to build something that works just like rationals should. Furthermore, this construction
can be used on more general algebraic objects; in abstract lingo, we’ve localized the ring Z.

(a) Define ' on Z× (Z− {0}) as (a, b) ' (x, y) if and only if ay = bx. Prove that ' is an equivalence relation.

(b) Consider the set of equivalence classes (Z × (Z − {0}))/', which we will rename Q for brevity. We’ll also
abbrieviate the equivalence classes; [a, b] represents the equivalence class of (a, b). We can define addition in
Q by the rule [a, b] + [x, y] = [ay+ bx, by]. Prove this is “well–defined” in the following sense: if (a, b) ' (c, d)
and (x, y) ' (z, w), then (ay + bx, by) ' (cw + dz, dw).

(c) Prove the map f : Q → Q given by f([a, b]) = a/b is a well-defined bijection and that f([a, b] + [x, y]) =
f([a, b]) + f([x, y]). Such an f is called an isomorphism, meaning that Q and Q look the same, as far as
additive structure goes. The set Q is our construction of the rationals.


